3.2.10 \(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx\) [110]

Optimal. Leaf size=118 \[ \frac {(3 A-7 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-1/2*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+1/4*(3*A-7*B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d
*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+2*B*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3047, 3098, 2830, 2728, 212} \begin {gather*} \frac {(3 A-7 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac {2 B \sin (c+d x)}{a d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((3*A - 7*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A -
 B)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + (2*B*Sin[c + d*x])/(a*d*Sqrt[a + a*Cos[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3098

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx &=\int \frac {A \cos (c+d x)+B \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\\ &=-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {-\frac {3}{2} a (A-B)-2 a B \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}+\frac {(3 A-7 B) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}-\frac {(3 A-7 B) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{2 a d}\\ &=\frac {(3 A-7 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.44, size = 104, normalized size = 0.88 \begin {gather*} \frac {-\left ((3 A-7 B) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )\right )+\cos ^3\left (\frac {1}{2} (c+d x)\right ) (A-5 B-4 B \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (-1+\sin ^2\left (\frac {1}{2} (c+d x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(-((3*A - 7*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5) + Cos[(c + d*x)/2]^3*(A - 5*B - 4*B*Cos[c + d*x])
*Sin[(c + d*x)/2])/(d*(a*(1 + Cos[c + d*x]))^(3/2)*(-1 + Sin[(c + d*x)/2]^2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(255\) vs. \(2(101)=202\).
time = 0.28, size = 256, normalized size = 2.17

method result size
default \(\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (3 A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -7 B \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 B \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+B \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(256\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(3*A*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/cos(1/2*d*x+1/2*c)
)*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a-7*B*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*2
^(1/2)*cos(1/2*d*x+1/2*c)^2*a+8*B*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*cos(1/2*d*x+1/2*c)^2-A*a^(1/2
)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+B*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2))/cos(1/2*d*x+1/2*c)/
a^(5/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 189, normalized size = 1.60 \begin {gather*} -\frac {\sqrt {2} {\left ({\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right ) + 3 \, A - 7 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (4 \, B \cos \left (d x + c\right ) - A + 5 \, B\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/8*(sqrt(2)*((3*A - 7*B)*cos(d*x + c)^2 + 2*(3*A - 7*B)*cos(d*x + c) + 3*A - 7*B)*sqrt(a)*log(-(a*cos(d*x +
c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)) - 4*(4*B*cos(d*x + c) - A + 5*B)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^2*d*cos(d*x + c)^
2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))*cos(c + d*x)/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________